How strong are lunar crustal magnetic fields at the surface?: Considerations from a reexamination of the electron reflectometry technique

نویسندگان

  • J. S. Halekas
  • R. J. Lillis
  • R. P. Lin
  • M. Manga
  • M. E. Purucker
  • R. A. Carley
چکیده

[1] Despite extensive study, we do not yet fully understand the origins of the unique lunar crustal magnetism. The strength of surface fields and their relation to local geology are crucial pieces of the puzzle. However, only a few surface measurements exist, and spacecraft magnetometers cannot detect magnetization with wavelengths much smaller than the orbital altitude. Meanwhile, electron reflectometry (ER) enables a remote measurement of surface fields, but its sensitivity to magnetization with different spatial scales is not well understood. In this paper, we report on new simulations of the ER technique and its sensitivity to magnetic fields produced by simulated crustal magnetization with various strengths and spatial distributions, utilizing full particle tracing simulations and the same data analysis techniques used for space data. We find that the ER technique reliably detects surface fields from magnetization with wavelengths larger than ∼10 km but has increasingly less sensitivity to smaller wavelengths. Since the few surface measurements we have imply very incoherent near‐surface magnetization, this implies that the ER technique may seriously underestimate the strength of lunar fields in some areas. Our results imply that small‐scale impact‐related crustal magnetization may prove even more important than previously thought.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lunar surface magnetic fields and their interaction with the solar wind: results from lunar prospector

The magnetometer and electron reflectometer experiment on the Lunar Prospector spacecraft has obtained maps of lunar crustal magnetic fields and observed the interaction between the solar wind and regions of strong crustal magnetic fields at high selenographic latitude (30 degreesS to 80 degreesS) and low ( approximately 100 kilometers) altitude. Electron reflection maps of the regions antipoda...

متن کامل

Particle-in-cell simulations of the solar wind interaction with lunar crustal magnetic anomalies: Magnetic cusp regions

[1] As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can re...

متن کامل

Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies.

We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observation...

متن کامل

Magnetic field direction and lunar swirl morphology: Insights from Airy and Reiner Gamma

[1] Many of the Moon’s crustal magnetic anomalies are accompanied by high albedo features known as swirls. A leading hypothesis suggests that swirls are formed where crustal magnetic anomalies, acting as mini magnetospheres, shield portions of the surface from the darkening effects of solar wind ion bombardment, thereby leaving patches that appear bright compared with their surroundings. If thi...

متن کامل

An improved crustal magnetic field map of Mars from electron reflectometry: Highland volcano magmatic history and the end of the martian dynamo

We apply improved kinetic modeling of electron transport in the martian thermosphere to fit pitch angle distributions measured by the Mars Global Surveyor (MGS) Magnetometer/Electron Reflectometer (MAG/ER), together with appropriate filtering, binning, averaging and error correction techniques, to create the most reliable ER global map to date of crustal magnetic field magnitude at 185 km altit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010